metabelian, supersoluble, monomial, A-group
Aliases: C32⋊4D6, C33⋊3C22, C3⋊2S32, C3⋊S3⋊2S3, (C3×C3⋊S3)⋊3C2, SmallGroup(108,40)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C33 — C3×C3⋊S3 — C32⋊4D6 |
C33 — C32⋊4D6 |
Generators and relations for C32⋊4D6
G = < a,b,c,d | a3=b3=c6=d2=1, ab=ba, cac-1=a-1, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 224 in 54 conjugacy classes, 15 normal (3 characteristic)
C1, C2, C3, C3, C22, S3, C6, C32, C32, D6, C3×S3, C3⋊S3, C33, S32, C3×C3⋊S3, C32⋊4D6
Quotients: C1, C2, C22, S3, D6, S32, C32⋊4D6
Character table of C32⋊4D6
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 6C | |
size | 1 | 9 | 9 | 9 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 1 | 0 | orthogonal lifted from D6 |
ρ7 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | 0 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | -1 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 0 | 2 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 0 | -2 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ11 | 4 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ12 | 4 | 0 | 0 | 0 | -2 | 4 | -2 | 1 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ13 | 4 | 0 | 0 | 0 | -2 | -2 | 4 | 1 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ14 | 4 | 0 | 0 | 0 | -2 | -2 | -2 | -1-3√-3/2 | -1+3√-3/2 | 1 | 1 | 1 | 0 | 0 | 0 | complex faithful |
ρ15 | 4 | 0 | 0 | 0 | -2 | -2 | -2 | -1+3√-3/2 | -1-3√-3/2 | 1 | 1 | 1 | 0 | 0 | 0 | complex faithful |
(1 5 3)(2 4 6)(7 11 9)(8 10 12)
(1 5 3)(2 4 6)(7 9 11)(8 12 10)
(1 2 3 4 5 6)(7 8 9 10 11 12)
(1 10)(2 9)(3 8)(4 7)(5 12)(6 11)
G:=sub<Sym(12)| (1,5,3)(2,4,6)(7,11,9)(8,10,12), (1,5,3)(2,4,6)(7,9,11)(8,12,10), (1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11)>;
G:=Group( (1,5,3)(2,4,6)(7,11,9)(8,10,12), (1,5,3)(2,4,6)(7,9,11)(8,12,10), (1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11) );
G=PermutationGroup([[(1,5,3),(2,4,6),(7,11,9),(8,10,12)], [(1,5,3),(2,4,6),(7,9,11),(8,12,10)], [(1,2,3,4,5,6),(7,8,9,10,11,12)], [(1,10),(2,9),(3,8),(4,7),(5,12),(6,11)]])
G:=TransitiveGroup(12,71);
(1 13 16)(2 17 14)(3 15 18)(4 12 9)(5 10 7)(6 8 11)
(1 13 16)(2 17 14)(3 15 18)(4 9 12)(5 7 10)(6 11 8)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 6)(2 5)(3 4)(7 14)(8 13)(9 18)(10 17)(11 16)(12 15)
G:=sub<Sym(18)| (1,13,16)(2,17,14)(3,15,18)(4,12,9)(5,10,7)(6,8,11), (1,13,16)(2,17,14)(3,15,18)(4,9,12)(5,7,10)(6,11,8), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,6)(2,5)(3,4)(7,14)(8,13)(9,18)(10,17)(11,16)(12,15)>;
G:=Group( (1,13,16)(2,17,14)(3,15,18)(4,12,9)(5,10,7)(6,8,11), (1,13,16)(2,17,14)(3,15,18)(4,9,12)(5,7,10)(6,11,8), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,6)(2,5)(3,4)(7,14)(8,13)(9,18)(10,17)(11,16)(12,15) );
G=PermutationGroup([[(1,13,16),(2,17,14),(3,15,18),(4,12,9),(5,10,7),(6,8,11)], [(1,13,16),(2,17,14),(3,15,18),(4,9,12),(5,7,10),(6,11,8)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,6),(2,5),(3,4),(7,14),(8,13),(9,18),(10,17),(11,16),(12,15)]])
G:=TransitiveGroup(18,53);
(1 13 10)(2 11 14)(3 15 12)(4 27 21)(5 16 22)(6 23 17)(7 18 24)(8 25 19)(9 20 26)
(1 7 4)(2 5 8)(3 9 6)(10 24 21)(11 16 25)(12 26 17)(13 18 27)(14 22 19)(15 20 23)
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)
(1 3)(4 9)(5 8)(6 7)(10 12)(13 15)(16 25)(17 24)(18 23)(19 22)(20 27)(21 26)
G:=sub<Sym(27)| (1,13,10)(2,11,14)(3,15,12)(4,27,21)(5,16,22)(6,23,17)(7,18,24)(8,25,19)(9,20,26), (1,7,4)(2,5,8)(3,9,6)(10,24,21)(11,16,25)(12,26,17)(13,18,27)(14,22,19)(15,20,23), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (1,3)(4,9)(5,8)(6,7)(10,12)(13,15)(16,25)(17,24)(18,23)(19,22)(20,27)(21,26)>;
G:=Group( (1,13,10)(2,11,14)(3,15,12)(4,27,21)(5,16,22)(6,23,17)(7,18,24)(8,25,19)(9,20,26), (1,7,4)(2,5,8)(3,9,6)(10,24,21)(11,16,25)(12,26,17)(13,18,27)(14,22,19)(15,20,23), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (1,3)(4,9)(5,8)(6,7)(10,12)(13,15)(16,25)(17,24)(18,23)(19,22)(20,27)(21,26) );
G=PermutationGroup([[(1,13,10),(2,11,14),(3,15,12),(4,27,21),(5,16,22),(6,23,17),(7,18,24),(8,25,19),(9,20,26)], [(1,7,4),(2,5,8),(3,9,6),(10,24,21),(11,16,25),(12,26,17),(13,18,27),(14,22,19),(15,20,23)], [(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)], [(1,3),(4,9),(5,8),(6,7),(10,12),(13,15),(16,25),(17,24),(18,23),(19,22),(20,27),(21,26)]])
G:=TransitiveGroup(27,35);
C32⋊4D6 is a maximal subgroup of
C33⋊D4 C32⋊2D12 S33 C32⋊D18 He3⋊5D6 C32⋊5D18 C33⋊A4 C33⋊17D6 C62⋊10D6
C32⋊4D6 is a maximal quotient of
C33⋊9(C2×C4) C33⋊9D4 C33⋊5Q8 C32⋊5D18 He3⋊6D6 He3.6D6 C33⋊17D6 C62⋊10D6
action | f(x) | Disc(f) |
---|---|---|
12T71 | x12-5x9+11x6-10x3+4 | 210·318·56 |
Matrix representation of C32⋊4D6 ►in GL4(𝔽7) generated by
5 | 3 | 2 | 3 |
1 | 3 | 3 | 0 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 4 |
3 | 6 | 3 | 2 |
6 | 3 | 4 | 2 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
5 | 2 | 2 | 1 |
0 | 6 | 1 | 1 |
2 | 5 | 6 | 2 |
5 | 5 | 2 | 4 |
5 | 2 | 0 | 1 |
3 | 3 | 3 | 6 |
3 | 4 | 2 | 6 |
5 | 5 | 1 | 4 |
G:=sub<GL(4,GF(7))| [5,1,4,0,3,3,4,0,2,3,0,0,3,0,6,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[5,0,2,5,2,6,5,5,2,1,6,2,1,1,2,4],[5,3,3,5,2,3,4,5,0,3,2,1,1,6,6,4] >;
C32⋊4D6 in GAP, Magma, Sage, TeX
C_3^2\rtimes_4D_6
% in TeX
G:=Group("C3^2:4D6");
// GroupNames label
G:=SmallGroup(108,40);
// by ID
G=gap.SmallGroup(108,40);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,122,67,248,1804]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export