Copied to
clipboard

G = C324D6order 108 = 22·33

The semidirect product of C32 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, A-group

Aliases: C324D6, C333C22, C32S32, C3⋊S32S3, (C3×C3⋊S3)⋊3C2, SmallGroup(108,40)

Series: Derived Chief Lower central Upper central

C1C33 — C324D6
C1C3C32C33C3×C3⋊S3 — C324D6
C33 — C324D6
C1

Generators and relations for C324D6
 G = < a,b,c,d | a3=b3=c6=d2=1, ab=ba, cac-1=a-1, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 224 in 54 conjugacy classes, 15 normal (3 characteristic)
C1, C2, C3, C3, C22, S3, C6, C32, C32, D6, C3×S3, C3⋊S3, C33, S32, C3×C3⋊S3, C324D6
Quotients: C1, C2, C22, S3, D6, S32, C324D6

Character table of C324D6

 class 12A2B2C3A3B3C3D3E3F3G3H6A6B6C
 size 199922244444181818
ρ1111111111111111    trivial
ρ21-1-11111111111-1-1    linear of order 2
ρ31-11-111111111-11-1    linear of order 2
ρ411-1-111111111-1-11    linear of order 2
ρ5220022-1-1-1-1-1200-1    orthogonal lifted from S3
ρ620-20-122-1-1-12-1010    orthogonal lifted from D6
ρ72-20022-1-1-1-1-12001    orthogonal lifted from D6
ρ82020-122-1-1-12-10-10    orthogonal lifted from S3
ρ920022-12-1-12-1-1-100    orthogonal lifted from S3
ρ10200-22-12-1-12-1-1100    orthogonal lifted from D6
ρ1140004-2-211-21-2000    orthogonal lifted from S32
ρ124000-24-2111-2-2000    orthogonal lifted from S32
ρ134000-2-2411-2-21000    orthogonal lifted from S32
ρ144000-2-2-2-1-3-3/2-1+3-3/2111000    complex faithful
ρ154000-2-2-2-1+3-3/2-1-3-3/2111000    complex faithful

Permutation representations of C324D6
On 12 points - transitive group 12T71
Generators in S12
(1 5 3)(2 4 6)(7 11 9)(8 10 12)
(1 5 3)(2 4 6)(7 9 11)(8 12 10)
(1 2 3 4 5 6)(7 8 9 10 11 12)
(1 10)(2 9)(3 8)(4 7)(5 12)(6 11)

G:=sub<Sym(12)| (1,5,3)(2,4,6)(7,11,9)(8,10,12), (1,5,3)(2,4,6)(7,9,11)(8,12,10), (1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11)>;

G:=Group( (1,5,3)(2,4,6)(7,11,9)(8,10,12), (1,5,3)(2,4,6)(7,9,11)(8,12,10), (1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11) );

G=PermutationGroup([[(1,5,3),(2,4,6),(7,11,9),(8,10,12)], [(1,5,3),(2,4,6),(7,9,11),(8,12,10)], [(1,2,3,4,5,6),(7,8,9,10,11,12)], [(1,10),(2,9),(3,8),(4,7),(5,12),(6,11)]])

G:=TransitiveGroup(12,71);

On 18 points - transitive group 18T53
Generators in S18
(1 13 16)(2 17 14)(3 15 18)(4 12 9)(5 10 7)(6 8 11)
(1 13 16)(2 17 14)(3 15 18)(4 9 12)(5 7 10)(6 11 8)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 6)(2 5)(3 4)(7 14)(8 13)(9 18)(10 17)(11 16)(12 15)

G:=sub<Sym(18)| (1,13,16)(2,17,14)(3,15,18)(4,12,9)(5,10,7)(6,8,11), (1,13,16)(2,17,14)(3,15,18)(4,9,12)(5,7,10)(6,11,8), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,6)(2,5)(3,4)(7,14)(8,13)(9,18)(10,17)(11,16)(12,15)>;

G:=Group( (1,13,16)(2,17,14)(3,15,18)(4,12,9)(5,10,7)(6,8,11), (1,13,16)(2,17,14)(3,15,18)(4,9,12)(5,7,10)(6,11,8), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,6)(2,5)(3,4)(7,14)(8,13)(9,18)(10,17)(11,16)(12,15) );

G=PermutationGroup([[(1,13,16),(2,17,14),(3,15,18),(4,12,9),(5,10,7),(6,8,11)], [(1,13,16),(2,17,14),(3,15,18),(4,9,12),(5,7,10),(6,11,8)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,6),(2,5),(3,4),(7,14),(8,13),(9,18),(10,17),(11,16),(12,15)]])

G:=TransitiveGroup(18,53);

On 27 points - transitive group 27T35
Generators in S27
(1 13 10)(2 11 14)(3 15 12)(4 27 21)(5 16 22)(6 23 17)(7 18 24)(8 25 19)(9 20 26)
(1 7 4)(2 5 8)(3 9 6)(10 24 21)(11 16 25)(12 26 17)(13 18 27)(14 22 19)(15 20 23)
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)
(1 3)(4 9)(5 8)(6 7)(10 12)(13 15)(16 25)(17 24)(18 23)(19 22)(20 27)(21 26)

G:=sub<Sym(27)| (1,13,10)(2,11,14)(3,15,12)(4,27,21)(5,16,22)(6,23,17)(7,18,24)(8,25,19)(9,20,26), (1,7,4)(2,5,8)(3,9,6)(10,24,21)(11,16,25)(12,26,17)(13,18,27)(14,22,19)(15,20,23), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (1,3)(4,9)(5,8)(6,7)(10,12)(13,15)(16,25)(17,24)(18,23)(19,22)(20,27)(21,26)>;

G:=Group( (1,13,10)(2,11,14)(3,15,12)(4,27,21)(5,16,22)(6,23,17)(7,18,24)(8,25,19)(9,20,26), (1,7,4)(2,5,8)(3,9,6)(10,24,21)(11,16,25)(12,26,17)(13,18,27)(14,22,19)(15,20,23), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (1,3)(4,9)(5,8)(6,7)(10,12)(13,15)(16,25)(17,24)(18,23)(19,22)(20,27)(21,26) );

G=PermutationGroup([[(1,13,10),(2,11,14),(3,15,12),(4,27,21),(5,16,22),(6,23,17),(7,18,24),(8,25,19),(9,20,26)], [(1,7,4),(2,5,8),(3,9,6),(10,24,21),(11,16,25),(12,26,17),(13,18,27),(14,22,19),(15,20,23)], [(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)], [(1,3),(4,9),(5,8),(6,7),(10,12),(13,15),(16,25),(17,24),(18,23),(19,22),(20,27),(21,26)]])

G:=TransitiveGroup(27,35);

C324D6 is a maximal subgroup of
C33⋊D4  C322D12  S33  C32⋊D18  He35D6  C325D18  C33⋊A4  C3317D6  C6210D6
C324D6 is a maximal quotient of
C339(C2×C4)  C339D4  C335Q8  C325D18  He36D6  He3.6D6  C3317D6  C6210D6

Polynomial with Galois group C324D6 over ℚ
actionf(x)Disc(f)
12T71x12-5x9+11x6-10x3+4210·318·56

Matrix representation of C324D6 in GL4(𝔽7) generated by

5323
1330
4406
0004
,
3632
6342
0020
0004
,
5221
0611
2562
5524
,
5201
3336
3426
5514
G:=sub<GL(4,GF(7))| [5,1,4,0,3,3,4,0,2,3,0,0,3,0,6,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[5,0,2,5,2,6,5,5,2,1,6,2,1,1,2,4],[5,3,3,5,2,3,4,5,0,3,2,1,1,6,6,4] >;

C324D6 in GAP, Magma, Sage, TeX

C_3^2\rtimes_4D_6
% in TeX

G:=Group("C3^2:4D6");
// GroupNames label

G:=SmallGroup(108,40);
// by ID

G=gap.SmallGroup(108,40);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-3,122,67,248,1804]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

Export

Character table of C324D6 in TeX

׿
×
𝔽